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| 49 eorem 1. (Hlbt-:-l!qa-l—\‘ac-hv"l-‘-t;eorem). Let M be a linear sub-
‘ ) l defined

/l'} $pice of a normed linear space N, and let / be a functional ¢
' M. Then fcan be extended to a functional F defined on the

Y

whole space N such that

l} IF=ll £ ),
/\/‘ [M.U. 1973, 72 (Statement) 76)

Proof. We first prove the following lemma which cons-
titutes the most difficult part of the theorem.

Lemma. Let M be a linear subspace of a normed linear space
N, and let f be a functional defined on M. Ux, & Mandif
My=(MU{x}))={x+ax, : x € M, x real)
is the linear subspace spanned by M and Xov then [ can be extended
to a functional [, defined on M, such that

I fo =)l fil.
Proof of the lemma. We prove the lemma for real and com-
plex scalars separately.

Case 1. Let N be a real normed space. (M. U. 1977
¢ Since x, is not in M, each vector w in M, is uniquely expres-

sible in the form ww=x+4av, with ¥ € M. We define our f, by
setting [y, (W)==fy (X +axg)esf (x)-} ar, ()

where r, is any real number, It is easy to see that for every choice
of the real number ry, f, is linear on M, such that

Jo (X)=f (x) for all x € AL,
[Forif8,y € Rand v, y € M, then fo (B (N4 &Xg) ¥ (3 ay))
w=fo (B +YP (8 +9) axy)
wf (BN YR+ (B +Y) ar,
«Bf ()2 () +Barg -+ yur,
=B ar) by (f (0)ary)
=B Lo [ baxgdty fo (v +axy)
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Thus £, extends J linearly to M,. We now prove that
I foll = :
We have Ll =11l |
ol =sup {1 £, (x) | : x € M, | x=<1)
2sup{|h(XI:xEM,|x|<I}
[+ M, D M]
=sup{|f(x)1:x € M, | x=<1}
(' fo=fonM
= [l fl. 0 :
Thus NAl>Efl -(A)

So our problem now is to choose rosuch that || f, | < I £l .
For this purpose, we first observe that if X1» Xg &T¢ any two vectors
in M, then
f(xa)‘f'f(xl)=f(xz“‘x1) < | f(x—x)) |
IS I xg—xq |l
=11 1| (xg+Xg)—(x3+ o) Il
SUAUCHxg+x0 Il 4+ 1) —(xgF+xg) 1)
=L W xgtxo L + UL N X+ 1
Thus —f () — L1 1l X 4% | S—F(X)+ £ 1] Xp+x
Since this inequality holds for arbitrary x,, x, € M, we see that
sup {—f () — ISl 1 y+xo | }< inf {—F(P)+ 151 1Y+ 1l }
YEM yeM
Choose r, to be any real number such that
sup {—fO)—1f1 Iy+xl}<rn< inf {—f(y)
yeM YEM
+ 00 1 y+xe0}
It follows that |
—~f D)=L 1y+x I < =S+ IfIl Iy+xlv yEM

(2
With this choice of r,, we shall prove that | f, | < I fIl .
Let w=x-ux, be an arbitrary vector in M,,.
Putting y=£ in (2), we get
X X X x,
s @)= | <<= Glrun G|

If « > 0, then right hand inequality in (3) gives,
1
ro < —2f@+5 11 1 xtaxg]

2 f(x)Fary < I fI 1} x+ax, |
= fo (x+oax)) IS x+4-axq |l
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276 Linear Functionals and the Hahn-Banach The.rem

2> foWifi iwl. |
If « < 0, we use left hand inequality in (3) to obtain

ro» ~f (i) —~ 11 “ﬁ +%

=-_lf(x)—— I I‘:-t

v 4

I x4+ Xox |l

1
= @ 1 ixdxar [ <0

We now multiply both sides of the above inequality by «.

Since « < 0, the inequality will be reversed.
Hence we obtain

1 l

ary S—f(X)+ (11 I x+xp |l
S (X)torg < U1 x+x0 |l
or SowW) < fi twi by (1)
Thus we have shown that when a%0, then
oW SIfI Iwi % w € M, -+43)
| [Of course when a=0, |[f, | = I f1Il]
Replacing w by —w, we get

So(=WYK SN | —wi ie. —f(W) K ILU Iwl. ..(4)
From (3) and (4), we conclude that

[ oW I ISl Nhwl ..(5)
[Since f is bounded (being a linear functional), (5) shows that
/o is bounded and so f, is a linear functional on M,).
Since [ foll =sup{|fyw)|:wE M, Iwl <1},
it follows from (5) that || f, | < I f1.
From (A) and (B), we finally obtain (1ol = || f1] .
This proves the lemma for real scalars//

Case II. Let N be a complex normed linear space.

Let N be a normed linear space over C and let f be a complex-
valued linear functional defined on a subspace M of N.

Let g=Re/f and #==Im f so that f(x)=g (x)+ih (x) for every

x € M. Then an easy computation shows that g and h are real-
valued functionals on the real space M.

LS x+M]=f(x)+f(p)

= & (x+y)+ih (x+p)=g (x)+ih (x)+g (¥)+ih ()

> E(x+y)=g (X)+g () and h (x+p)=h (x)+h ().
and if a € R, then

f(ax)=uf (x) 2> g (ax)+ih (ax)=u [g (x)+-ih (x)]

or

.. (B)
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= g (ax)=ag (x) and h (ax)=ak (x).
h are linear on M. Further
18 (x) | < ([ f(x)] <If hx)
:nd :{o boundedness of S implies boundedness of g and similarly of
. ence g, h are real linear functionals on the real space M|
Also for all x € M, we have
g (ix)+ih (ix)=f (ix =if (x)=—h (x)+ig (x)
whence equating real and imaginary parts,
g (ix)=—h (x) and & (ix)=g (x).
Consequently, f(x)=g (x)—ig (ix)=h (ix)+ih (x).
Let f (x)=g (x)—ig (ix).
Since g is a real-valued functional on the real space M, by Case I,

g can be extended to a real-valued functional g, on the real space
M, in such a way that | g, I| =l g .

We now define f; for x € M, by f, (x)=g, (x)—ig, (ix). It is easy
to see that f, is linear on the complex space M, such that
Jo=f on M.
[fo (x+¥)=80 (x+1)—i& (ix+iy)=g, (X)+8& (¥)
—igy (ix)—ig, (iy)
=g (X)—i8, (ix)+8o (¥)—1g, (iy)
=fo (X)+£o (»)-
And if a, b € R, then
£ ((a+ib) x)=g, (ax +ibx)—ig, (—bx+iax), by def. of f,
=ag, (x)+bgy (ix)—i (—b) g, (x)—iag, (ix)
=(a+ib) [gy ()~ ig (ix)]

Thus g and

=(a+ib) £, (x). . .
Thusfois linear on M,. Also g,=gon M implies fo=f on M].
What remains to prove is that | foll = 1111l

Let x € M, be arbitrary and write f; (x)=re‘
here r 3> 0O and @ real. Then
whe lf (x) ' =r=e’“‘"€“=€""fo (x)z_f;,(e"‘“ x)
’ =g, (" x) [+ ris real]
e -{0 " g
[ go (e X) | <&l Ie™ x
fllg:lf le=| [xI=1gI Ixl [~ [e*]|=I]
=gl Nxn<ifinxl. .
This shows that Jfo 18 bounded (hence a functional on M,) and that
/ol < 1.f1l. Also asin Casel, itis obvious that [l/]] < [l
0

Therefore [1fo =11l
This completes the proof of the lemma.

Scanned with CamScanner

I T —



278 Linear Functionals and the Hahn-Banach Theorem

Proof of the main theorem. If M,= N, then we finish ; if not,
We may repeat the process of extension, but what guarantee is
there that we shall ever extend to the whole space N ? It is here
that we need Zorn’s lemma which states :

‘Every non-empty partially ordered set in which each chain
an upper bound has a maximal element’.

Let P denote the set of all ordered pairs ( fo, M) Where £ is
an extension of f to the subspace My D> M and || A ||=|IfIl-
Partially order P by setting (fa, Ma) < (fp, M,) iff My C M,
and fi=f, on M, [The reader can easily verify that < is actually
a partial ordering on P]. P is evidently non-empty, for certainly
(f, M) € P, and further, by virtue of the lemma, it is seen that
there are less trivial members of P. Let O={( fi. M,)} be a chain
(i.e. a totally ordered set)in P. Then it is easy to see that Q has
an upper bound (9, U M;) where ¢ (x)=f; (x) forall x € M,.
The point to be noted here is that U M, is a subspace of N and
that ¢ is well defined because of total ordering on Q

[Let x, y € U M, and «, B any scalars. Then for some i, j, we
have x € M;and y € M,. Since Q is totally ordered, either
M, C M;or M; C M, Without loss of generality, we may assume
M; C M;. Then x, y € M,. Since M, is a subspace of N, we have
ax+By € M; C U M, showing that U M, is a subspace of N.
To show that ¢ is well-defined, Suppose an element x in U M, is
such-that x € M;and x € M,. Then by the definition of P, we

have ¢ (x)=/, (x) and ¢ (x)=f; (x). By total ordering of Q. either
Ji extends f; or vice versa. In either case, Ji (X)=f; (x). Thuso
is well-defined].

Now all the conditions of Zorn’s lemma are satisfied.
Hence there exists a maximal element (F, H) in P. To
complete the proof, we must show that H— N. Suppose, if possi-
ble, N contains H properly. Then there exists x, € N—H and so
by our lemma, F can be extended to a functjona] F, on

Ho=(H U {-’fo))
which contains H properly. But this contradicts the maximality
of (F, H). Consequently, we must have F— p and the proof is
complete.

Note 1. Explanations in square brackets .
by the students in the examination. [ Jmay be omitted

Sublinear functionals and the generalized
Definition. Let L be a linear space,

p:L—->R

has

‘Hahn-Banach Theorem.
A mapping
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is called a sublj . .
Properties near functional on i it satisfies the following two
() P(x+») <P ()+p () ¥ x, y € L,
(i) p (ax)=ap (x) provided « > 0. '
The property (i) is called subadditivity and (ii) the positive-
homogeneity.

Tllustration. Let L=R~. If x=(ay,..., ¢a) € R*, let us define
PX)=ay| +...+ | an].

Then p is a sublinear functional on L.
Convex Functional.

If in addition, p satisfies the condition

(i) p(x) 2 0% x €N,
then p is called a convex functional.

A convex functional p is said to be symmetric if we have

(iv) p (ex)= | « | p(x) for all scalars a

Note 2. As in remark 1 of § 1, the condition (iii) can be
deduced from the conditions (i) and (iv). Thus p will be a symmetric
copvex functional if it satisfies (i) and (iv)
eorem 2. (Generalized Hahn-Banach Theorem). Let L bea
linear space, not necessarily normed and let p be a sublinear
tnctional on L, i.e, p is a map from L into R satisfying

/0 p (x+y) <px)+p () forallx € L andalla >0  ..(1)
p (ax)=ap (x) forall x € L and all « > 0 (2
. ] ] bSpCe 1‘{
;< a real linear functional defined on a Iu;car subspe
zg;x‘:h‘;l f(x) < p(x)for all x in M, then there exists @ real linear
Sunction F defined on the whole space L such that f=F on M and
x) for all x € N. ‘
] (x)lfng:'s(ce)n{tplex linear space, then condition (1) is the same but
is modified to p (#X)= lalp(x)forallx € L and smlars-’a:
(2) is mod., .
And fis a complex linear functional on M such that | f(xX) | < p(xX)
n
o a”: inﬁ;:sian in this case is the same except that we have
c "
e ;F(x)|<p(x)VxEL.
Proof. Casel First let L be a real linear space.
roof. .

nsider the subspace
1 %o ¢MM-’-—3! U {x))={x+aX: ¥ € M, « real} |
o= "Define f, on My by fo (x-+ax)=f (x)tar,
Mya:eal rTumber so that f; is real value. Itiseasyto

spanned by
where r, is &0
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280 Linear Functionals and The Hahn-Banach Theorem

see that f; is lingar on M, and fy ==/ on M. 1[.xy, X, &re a0y vectors

in M, then | .
£ () (k) =f (xy—x)) K p (xg—3,) by hypothesis
= p (X4 %) — (X + X)) & P (X +Xo)
+p (—X3—%,) by (1)
so that —f (Xg) =P (—X=Xp) & —f (X9)+P (X3 +%0)
Since this inequality holds for arbitrary X, Xs € M, we conclude

that
sup {—f (3)—p (—y—2xo)} € 1o & inf {—=S(3) +P (y4xo)}
M YEM

ye
Choose r, to be any real number such that

SUp {—f (#)—p (—y—2xo)} & ro < inf {—f(¥)+p (y+X)}.
YEM yeEM
It follows that
—f (W) =P (—y—Xg) & ro & {=S(P)+P (¥-+Xo)} . (3)
for all y €M. With this choice of r,, we shall show that
fo (x) € p (%) for all x € M,
Let w==.x4ax, be an arbitrary element in M,. If x=0, then

So (W)=1f (%) < p (x).
So let az%0 and put yzg in (3) to obtain

x X
1 (2= ()<< —(E)+e (3+n ) @
forall x € M. If « > 0, then the right hand inequality in (4)
gives
1 !
ro S =7 S (Xo)+2 p (¥-+axy)

» f(x)+ary € p (x+axp) B f (x+axy)) € p (x+axy).
And if « < 0, then the left hand inequality in (4) gives,

S B et i
=1y -(=,)  (s+axg) by @ sinee —L 5 0

l
- :*;‘-f(x)'}.-; p (x+ax,)

We now multiply both sides of this inequality by «. Since a < 0,
the inequality will be reversed.
ary S (X) & p (X-+axy) & f, (x+ax,) € p (x4-ax),

Thus when as=0, we obtain
fo (¥ +axol € p (x+axg) for all x € M
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Le. fo (w) < 2 (W) for a) WE M

functional ¢p oo Thus f, j ine:

M, sy o 18 a4 real linear

Jo (W) € 2 (w) for gl wceh ;};ﬁ" Jo (¥)=f (%) forall x€ M and
I My=L, then we finsp "

of extension - but :if not WE may repeat the process

what .
to the whole space L %tu?srantee I8 there that we shallever extend

needed. Let P denote the sat fos point that Zomn's wmmg is

. X et of all '
Aiis an extension of fto the subspaceojzel;dﬁsam % 03) whivey

e Partiall A )< p () for all x € b,
g e A )
. y non-empty, Let Q={f, M,)}
be a chain (i.e a totally ordered set) in P. Then it j
that Q has an upper bound, . en it is easy to see
. (%, U M) where @ (x)=f; (x) for all x € M,.
:l‘he point to be noted is that U M, is a subspace oef N ;uid that ¢
1s well-defined because of total ordering on ¢
(For proof, see the previous theorem]
Hence by Zorn’s lemma, P contains a maximal element (F, H).
To complete the proof, we must show that =N Suppose, if
possible, N contains H properly. Then there exists x, € N—H
and by first part of the theorem, F can be extended to a functional
F, on Hy=(H U {x,}) which contains H properly. But this con-
tradicts the maximality of (F, H). Consequently, we must have
H=N and the proof is complete.
Case II. Now let L be a complex linear space.
Here fis a complex linear functional on M such that
If(x)]gp(x)foralléeﬂﬁ \ & 7
_ enf (x) <1 f(x)| <pand so by case IL f,can
i‘:tgﬁtenl;‘:cf t:)ha l{;c;r)map F, of L into R such that F,=f, on M
and F, (x) < p (x) for all x € L. Define F by
shilr (X)——ill'wl (’x)’finfti([)‘l'lal on L such that
i & at Fis a linear
p_l_:}]c:; ';;asx{vt]?aste:ézains to prove is that | F (x) I < p (x) for
all x € L. Letx € L bearbitrary and write F (x)=re% where
r>Oandpisteal. TRL L p0=F(e* D)
| F(x) | :F_(e"" x) [ risreall
; pl(é,—u x) since Fy (x) K p(x) ¥ ¥ € L

e ip(aby @
== (x)
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